Seminar On Green Engine report download

The green engine is one of the most interesting discoveries of the new millennium. It has got some unique features that were used for the first time in the making of engines. This engine is a piston less one with features like sequential variable compression ratio, direct air intake, direct fuel injection, multi-fuel usage etc. The efficiency of this engine is high when compared to the contemporary engines and also the exhaust emissions are near zero. The significance of the engine lies in the efficiency when the present world conditions of limited resources of energy are considered. Prototypes of the engine have been developed. Generators have been produced with the green engine.


As earlier mentioned, the Green engine is a six phase, internal combustion engine with much higher expansion ratio. The term phase is used instead of stroke because stroke is actually associated to the movement of the piston. The traveling of the piston from bottom dead centre to the top dead centre or vice versa is termed a stroke. But, in this engine pistons are absent and hence, the term phase is used. The six phases are: intake, compression, mixing, combustion, power and exhaust.
The engine comprises a set of vanes, a pair of rotors which houses a number of small pot-like containers. It is here, in these small containers that compression, mixing, combustion are carried out. The engine also contains two air intake ports, and a pair of fuel injectors and spark plugs. The spark plugs are connected in such a system so as to deactivate them, when a fuel which does not need sparks for ignition is used. The rotor is made of high heat resistance and low expansion rate material such as ceramic. Whereas, the metal used is an alloy of steel, aluminium and chromium.
Even though the engine is of symmetric shape, the vanes traverse an unsymmetrical or uneven boundary. This shape cannot be compromised as this a result of the path taken by the intake and exhaust air. This uneven boundary is covered by the vanes in a very unique fashion. The vanes are made in such a way that it comprises of two parts: one going inside a hollow one. At the bottom of the hollow vane is a compressive spring. On top of this spring is mounted the other part of the vane. Now, let us come to the working of the engine.

1 Intake The air arrives to the engine through the direct air intake port in the absence of an air inlet pipe, throttle and inlet valves on the air intake system. A duct is provided on the sides of the vane and rotor. The duct is so shaped that when the air moves through, strong swirls generate when it gets compressed in the chamber. The air pushes the vane blades which in turn impart a proportionate rotation in the small rotor which houses the chambers. The inlet air duct ends with a very narrow opening to the chamber.

2 Compression
The rushing air from the duct is pushed by the blades into the small chambers in the rotor. The volume of these chambers is comparatively very small. Naturally, the compression obtained by such a procedure is very satisfactory. As earlier mentioned, the compressed air is in a swirling state, ready to be mixed with the fuel which will be injected into the chamber when it will be place before the injector by the already rotating rotor.

3 Mixing
As soon as the chamber comes in front of the fuel injector, the injector sprays fuel into the compressed air. Because of the shape of the chamber, the fuel mixes well with the compressed air. The importance of ideal mixing leads to deletion of CO emission. And also because of the strong swirling, a centrifugal effect is exerted in the air-fuel mixture. Moreover, the rotation of the burner, makes this centrifugal effect all the more effective. Mixing phase has enough time to produce an ideal air-fuel mixture as the spark plug is positioned towards the other end of the rotor or burner.

4 Combustion
As the chamber rotates towards the end of its path, it is positioned before the spark plug. A spark flies from the plug into the air-fuel mixture. Because of the mixing phase, the air-fuel mixture is denser near the spark plug, thereby, enabling lean-burning of the charge and also a uniform flame front. As soon as the whole charge is ignited, the burner rotates to position itself in front of the narrow exit.

5 Power The expanded gas rushes out of the chamber through the narrow opening, thereby pushing the name in the process. The sudden increase in volume ensures that more power is released. Or in other words, the thermal energy is fully utilized.

6 Exhaust
As the thermal energy is fully utilized, the exhaust gases bring along comparatively less heat energy. This mainly helps in the thermal efficiency of the engine. It raises the engineâ„¢s thermal efficiency and also because of the complete burning of the charge, poisonous gases like CO are absent in the exhaust emissions.

ADVANTAGES Of Green Engine
As obvious from the technical features which include effective innovations, the advantages of the Green engine over the contemporary piston engines are many.

1 Small Size and Light Weight
As Green engine is very compact with multi-power pulses, the size and weight could be 1/5 to 1/10 of the conventional piston engines on same output. Its power to weight ratio could be more than 2 hp per pound without supercharge or turbo charge.

2 Limited Parts
There are only some dozens of parts easy to be manufactured in the engine structure.

3 High Efficiency
Because many great innovations are being employed in the engine design such as: direct air intake, sequential variable compression ratio, super mixing process, constant volume combustion, controllable combustion time, high working temperature of the burner, high expansion ratio and self adapting sealing system etc., the thermal efficiency of the engine could be potentially as high as 65 %, even more if water add-in technology is to be considered.

4 Multi-fuels
Due to six phases of working principle, super air fuel mixing process and constant volume combustion with controllable time, the Green engine becomes the only real multi-fuel engine on our planet; any liquid or gas fuels can be burnt well. Also it would be ideal to coal powder if special anti-wearing material is employed.

5 Near-zero Emissions With perfect air-fuel mixture, complete combustion under lower peak temperature and free of quenching effect, the emission of CO, HC and NOx could be near zero, thereby, a catalytic converter could be not required at all.

6 Smooth Operation
Due to inherence of good dynamic and static balance the performance of the Green engine is as smooth as an electric motor.

7 Fast Accelerating Response
Direct injection, little rotating inertia and deleted reciprocating motion can characterize the Green engine with operating at a very fast accelerating response.


The Green engineâ„¢s prototypes have been recently developed, and also because of the unique design, limitations have not been determined to any extent.

Download Report:

Seminar On Green Engine report download 

No comments

Powered by Blogger.